Project Euler #27: Quadratic primes
Question
Euler discovered the remarkable quadratic formula:
It turns out that the formula will produce 40 primes for the consecutive integer values
. However, when is divisible by 41, and certainly when is clearly divisible by 41.
The incredible formula
was discovered, which produces 80 primes for the consecutive values . The product of the coefficients, −79 and 1601, is −126479.
Considering quadratics of the form:
e.g. and
and , for the quadratic expression that produces the maximum number of primes for consecutive values of , starting with .
Answer : -59231
Hacker Rank Problem
Solution
Euler discovered the remarkable quadratic formula:
. However, when is divisible by 41, and certainly when is clearly divisible by 41.
The incredible formula
was discovered, which produces 80 primes for the consecutive values . The product of the coefficients, −79 and 1601, is −126479.
Considering quadratics of the form:
, where and
where
is the modulus/absolute value of e.g. and
Find the product of the coefficients,
and , for the quadratic expression that produces the maximum number of primes for consecutive values of , starting with .
Answer : -59231
Hacker Rank Problem
Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | import java.util.*; public class Solution { //store the primes under 10000 static boolean[] prime_array = new boolean[10000]; static { for (int i = 2; i < 10000; i++) { if (isPrime(i)) { prime_array[i] = true; } } } public static void main(String[] args) { Scanner in = new Scanner(System.in); int a0 = in.nextInt(); int maxNumOfPrimes = 0; int resultA = 0; int resultB = 0; for (int a = -a0; a <= a0; a++) { for (int b = -a0; b <= a0; b++) { int count = 0; mainLoop: for (int n = 0;; n++) { long r = n * n + a * n + b; boolean re; if (r < 0) { break mainLoop; } if (r <= prime_array.length) { re = prime_array[(int) r]; } else { re = isPrime(r); } if (!re) { break mainLoop; } count++; } if (count > maxNumOfPrimes) { maxNumOfPrimes = count; resultA = a; resultB = b; } } } System.out.println(resultA + " " + resultB); in.close(); } private static boolean isPrime(long r) { if (r < 2) { return false; } for (int i = 2; i * i <= r; i++) { if (r % i == 0) { return false; } } return true; } } |
Comments
Post a Comment